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Abstract

Residuals have long been used in frequency domain parameter estimation methods to model the influence
of out-of-band modes but, typically, as a fixed set of no more than two or three terms. Recently, a
systematic approach to the use of residual polynomials has led to the development of a generalized residual
model. The use of a generalized residual model with rational fraction polynomial frequency domain
parameter estimation methods allows the contribution of out-of-band modes to be included without
increasing the model order and creating additional computational poles. Of particular interest is the use of
the generalized residual for single-degree-of-freedom (s.d.o.f.) techniques, which generally do not consider
the residual effects and suffer accordingly. With the use of generalized residuals, it becomes possible to
properly account for nearby modes and also extract accurate residues with an s.d.o.f. algorithm. The
development of the generalized residual polynomial model is outlined and a new s.d.o.f. frequency domain
algorithm with generalized residuals is developed.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The frequency response of a system is the superposition of an infinite number of individual
modes that have contribution at all frequency. Residuals are simplified expressions included in the
frequency response model to account for the influence of modes outside the frequency range of
interest. Residuals have been included in all types of frequency domain algorithms for estimating
poles and residues, but primarily as a byproduct or afterthought. However, residuals are an
integral part of the rational fraction polynomial parameter estimation model. This paper proposes
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that the numerator polynomial, which describes the residues and residuals, and the denominator
polynomial, which describes the poles, are equally important in the parameter estimation process.

2. Background

Modal parameter estimation is as ‘‘a special case of system identification where the a priori
model of the system is known to be in the form of modal parameters [1]’’. The multiple-input/
multiple-output (MIMO) frequency response function (FRF) model can be formulated as the
partial fraction, or modal model

½HðoÞ� ¼
X%N

r¼1

½Ar�
jo� lr

þ
½An

r �
jo� lnr

� �
; ð1Þ

which is non-linear in the unknown parameters, the poles ðlrÞ and the residues ðArÞ: The problem
can also be approached in two linear stages as the rational fraction polynomial model

½HðoÞ� ¼
P %m�2

k¼0 ðjoÞk½bk�P %m
k¼0 ðjoÞk½ak�

; where %mX2 ð2Þ

from which the poles are computed as the eigenvalues of the companion matrix formed with the
½ak� coefficient matrices. Once the poles are known, the solution for the residues in Eq. (2) is linear.
Modal parameter estimation involves separating the single-degree-of-freedom contributions to

the multiple-degree-of-freedom (m.d.o.f.) frequency response function measurements using
numerical techniques [1]. The summation of s.d.o.f. modes to form an m.d.o.f. FRF, which is
stated mathematically in Eqs. (1) and (2) and is depicted graphically in Fig. 1, where the dotted
lines are the s.d.o.f. modes and the solid line is the m.d.o.f. summation.

Fig. 1. Superposition of s.d.o.f. modes to form an m.d.o.f. FRF.
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In both forms of the MIMO FRF model in Eqs. (1) and (2) above, it is implicit that all modes
are included, but in reality, the FRFs are measured in some frequency range. In addition, the data
are often processed in limited frequency bands of interest. The vertical, dashed lines in Fig. 1
depict the positive- and negative-frequency ranges of interest.
The FRF models can be written in three frequency bands, with modes in the frequency range of

interest and upper and lower out-of-band modes, in partial fraction form as

½HðoÞ� ¼
X

r

½Ar�
jo� lr|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

lower out-of -band modes

þ
X

r

½Ar�
jo� lr|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

in-band modes

þ
X

r

½Ar�
jo� lr|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

upper out-of -band modes

ð3Þ

or in rational fraction form as

½HðoÞ� ¼
P

k ðjoÞk½bk�P
k ðjoÞk½ak�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

lower out-of -band modes

þ
P

k ðjoÞk½bk�P
k ðjoÞk½ak�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

in-band modes

þ
P

k ðjoÞk½bk�P
k ðjoÞk½ak�|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

upper out-of -band modes

: ð4Þ

With regard to the positive- and negative-frequency bands, the terms of upper and lower out-of-
band modes should be considered in the absolute-value sense, while the in-band modes also
include the contributions of their conjugates. The lower and upper out-of-band modes are
considered as residuals with respect to the frequency range of interest and are included in the
models as simplified expressions:

½HðoÞ� ¼ ½RlðoÞ� þ
XN

r¼1

½Ar�
jo� lr

þ
½An

r �
jo� lnr

� �
þ ½RuðoÞ� ð5Þ

and

½HðoÞ� ¼ ½RlðoÞ� þ
Pm�2

k¼0 ðjoÞk½bk�Pm
k¼0 ðjoÞk½ak�

þ ½RuðoÞ�; ð6Þ

where ½RlðoÞ� is the lower residual function and ½RuðoÞ� is the upper residual function. Note that
the N in Eq. (5), the number of modes in the frequency range of interest, is different from the %N in
Eq. (1), the total number of system modes, and that the m in Eq. (6) is different from the %m in
Eq. (2).
As indicated in Eqs. (3)–(6), residuals are terms included in the frequency response model to

account for the contributions of modes that are above and below the frequency range of interest.
Residuals are typically classified as lower residuals, which represent the contribution of the modes
below the frequency range of interest, and as upper residuals, which represent the contribution of
the modes above the frequency range of interest. The most commonly used expression for the
lower residual is an inverse function of frequency squared and for the upper residual is a constant.
Residuals have been included in algorithms that estimate poles, such as those developed in Refs.
[2–26] and in algorithms that estimate residues or mode shapes, such as those in Refs. [12,14–
16,19,23,27–30]. In addition, the residuals themselves have been estimated for use in system
modelling application, such as in Refs. [31–37], or for Hilbert transform procedures, as in Ref.
[38]. Some of the earliest developments of residuals in the modal area were by Klosterman [39] in
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1971, followed by Van Loon [40] in 1974. Since then the development of most frequency domain
parameter estimation algorithms have included some consideration of residuals.
The use of residuals is generally restricted to frequency domain models because the effects of

out-of-band modes are not readily described in the time domain. In the frequency domain, the
contribution of the modes below, above and within the frequency range of interest can be
naturally separated and simplified expressions for the residuals formulated. But in the time
domain, both the modes of interest and the residual modes have response at all time points. That
is, the response of in-band and out-of-band modes cannot be separated into segments of the time
response. The commonly accepted opinion is that it is difficult to formulate a reasonable
mathematical model and solution for the general time domain algorithm that includes residuals
[41]. Therefore, the discussion of residuals contained in this paper will concentrate solely on the
frequency domain.
Residuals and their effects have been viewed in a variety of ways, which has led to a variety of

approaches to model them and applications that consider them. Residuals have been described as
‘‘asymptotic representations of other modes’’ and as ‘‘correction’’ or ‘‘compensation’’ terms.
Some have suggested reducing computational modes with residuals, while others have suggested
compensating for residuals with out-of-band modes. There are a few prevalent residual models:
physical models that express residuals as the low- and high-frequency behavior of an s.d.o.f. FRF,
mathematical models that represent residuals with a frequency domain power polynomial,
pseudo-modes of some variant and estimation out-of-band modes.
The physical residual model is based on the asymptotic behavior in the frequency range of

interest of an out-of-band, single-degree-of-freedom mode. Historically, the lower residual is a
1=o2 term and the upper residual is a constant term. This is equivalent to setting RlðoÞ to R�2o�2

and RuðoÞ to R0 in Eqs. (5) and (6). The lower residual, which represents the inertia of the lower
modes, is also known as inertia restraint, inertia constraint and residual inertia. The upper
residual, which represents the flexibility of the upper modes, is also known as residual flexibility
and residual compliance. These typical forms of the physical residuals have always been used with
the implicit assumption that the out-of-band modes are ‘‘well-separated’’ from the in-band modes.
The limits of this assumption have been established by examining the relative error between the
asymptotes of an s.d.o.f. FRF and the constant and 1=o2 residuals. The residual modes must be
separated from the frequency range of interest by a factor of 10 for a one-per cent agreement [42].
This is typically not the case, especially when processing a narrow sub-band of frequency; the
residual modes are usually just outside of the band. If the out-of-band modes are not sufficiently
separated from the in-band modes, their effects cannot be adequately described by the simple,
physical residual model. Typically, the closer the out-of-band modes are to the frequency range of
interest, the greater the number of residual terms that are needed to fully account for their
influence.
While the residual inertia and residual flexibility terms are based on a simplification of physical

frequency response characteristics, ‘‘the residual effects of modes below and/or above the
frequency range of interest cannot be completely represented by such simple relationships [41]’’.
To overcome the limitations of the single-term, physical residuals, the upper and lower residual
have also been modelled with multiple-term, purely mathematical expressions, which ‘‘can have
any mathematical form that is convenient as long as the lack of physical significance is
understood. Power functions of frequencyy are commonly used with such a limitation [43]’’. It is
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these frequency domain power polynomials that are the basis of the generalized residual model
presented in this paper.

3. Rational fraction polynomial model with generalized residuals

If the out-of-band modes are not sufficiently separated from the in-band modes, the single-
term, physical residual model is not adequate to describe the residual effects in the frequency
range of interest. As was mentioned above, mathematical models of power polynomials of
frequency have been used to represent residuals. To better model the asymptotic behavior of the
residual modes, more polynomial terms can be used of the form

P
k ðjoÞkRk; with both positive

and negative orders. Since the 1=o2 term models the lower residuals, it is natural to use negative
polynomial orders for the lower residual and similarly to use positive polynomial orders for the
upper residual. (Although zero is not strictly either positive or negative, the zeroth order
polynomial term is included in the upper residuals, with positive orders, as a notational
convenience and because the constant term is the upper physical residual.) In fact, it has been
shown that a polynomial function can be fit to any segment of an FRF, or a superposition of
FRFs, except at the resonance peaks [42]. That is, this residual polynomial can adequately
represent the asymptotic behavior of residual modes. Together the modal model and the residual
model account for all of the contributions to the FRF in the frequency band.
The power polynomial residual model is incorporated into the rational fraction polynomial

FRF model of Eq. (6) by letting the lower residual function RlðoÞ be a complete
1 polynomial with

negative orders and the upper residual function RuðoÞ be a complete polynomial with positive
orders, that is,

RlðoÞ ¼
X�1
k¼nl

ðjoÞk½Rl;k�; where nlo0 is the lower index limit

of the residual polynomial; ð7Þ

RuðoÞ ¼
Xnu

k¼0

ðjoÞk½Ru;k�; where nuX0 is the upper index limit

of the residual polynomial:

Substituting these expressions for the residual functions into Eq. (6),

½HðoÞ� ¼
X�1
k¼nl

ðjoÞk½Rl;k� þ
Pm�2

k¼0 ðjoÞk½bk�Pm
k¼0 ðjoÞk½ak�

þ
Xnu

k¼0

ðjoÞk½Ru;k�; ð8Þ

and combining the upper and lower residual functions into a generalized residual polynomial that
includes both the upper and lower residuals,

½HðoÞ� ¼
Pm�2

k¼0 ðjoÞk½bk�Pm
k¼0 ðjoÞk½ak�

þ
Xnu

k¼nl

ðjoÞk½Rk�: ð9Þ

1By a complete polynomial, it is meant that the integer orders of the polynomial are continuous and inclusive, that is,

from a minimum order to a maximum order including all orders between.

W.A. Fladung et al. / Journal of Sound and Vibration 262 (2003) 677–705 681



The first term in Eq. (9) is the rational fraction polynomial modal model and the second term is
the generalized residual polynomial model. Multiplying the second term by a fractional identity to
create a common denominator,

½HðoÞ� ¼
Pm�2

k¼0 ðjoÞk½bk�Pm
k¼0 ðjoÞk½ak�

þ

Pm
k¼0 ðjoÞk½ak�

Pnu

k¼nl
ðjoÞk½Rk�Pm

k¼0 ðjoÞk½ak�
: ð10Þ

The product of the polynomials in the numerator of the second term creates another polynomial.
The coefficients of the new polynomial ð #RkÞ are linear combinations of the coefficients of the
multiplied polynomials ðak;RkÞ and the indices of the new series are the sum of the indices of the
multiplied series:

½HðoÞ� ¼
Pm�2

k¼0 ðjoÞk½bk�Pm
k¼0 ðjoÞk½ak�

þ

Pmþnu

k¼nl
ðjoÞk½ #Rk�Pm

k¼0 ðjoÞk½ak�
: ð11Þ

The range of the indices on the numerator series of the second term in Eq. (11) is k ¼ nl to m þ nu;
which encompasses the range of the indices on the numerator series of the first term, k ¼ 0 to
m � 2: Combining these two numerator polynomials over the common denominator creates
another numerator polynomial in which the #bk coefficients are a linear combination of the bk and
#Rk coefficients,

½HðoÞ� ¼

Pmþnu

k¼nl
ðjoÞk½ #bk�Pm

k¼0 ðjoÞk½ak�
; ð12Þ

to give the final form of the rational fraction polynomial model with generalized residuals. (Note
that by allowing nl to be 0 and nu to be �2; residuals are effectively eliminated from the general
form of Eq. (12), which reduces to the form of the rational fraction polynomial model without
residuals in Eq. (2).) This generalized frequency domain power polynomial residual model is a
purely mathematical construct. It does not have direct physical significance to the FRF model, but
can more completely describe the contributions of the residual modes that are not well separated
from the frequency range of interest.
The result is essentially a change of the numerator polynomial order indices from k ¼

0;y;m � 2 to k ¼ nl ;y;m þ nu: However, specifying the minimum and maximum of the orders
indices, nl and nu; for the residual polynomial in Eq. (9) is not the same as specifying the orders of
the numerator polynomial in Eq. (12). The convolution of the residual polynomial with the
denominator polynomial determines the orders of the numerator polynomial. The residual model
is defined as a complete polynomial, and not as a spaced sequence of orders, because any omitted
orders will typically be produced by the convolution with the rational fraction polynomial
denominator. The residuals included in the rational fraction polynomial model are defined by
specifying the values of nl and nu:
The numerator coefficients ð #bkÞ in Eq. (12) are combinations of the original numerator

polynomial coefficients ðbkÞ; the denominator polynomial coefficients ðakÞ and the generalized
residual polynomial coefficients ðRkÞ in Eq. (9). Consider the following example with nl ¼
�2; nu ¼ 0 and m ¼ 4 in Eq. (9), replacing the variable jo with s and omitting the matrix notation
for brevity:

HðsÞ ¼
b0 þ b1s þ b2s

2

a0 þ a1s þ a2s2 þ a3s3 þ a4s4
þ R�2s

�2 þ R�1s
�1 þ R0;
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HðsÞ ¼

a0R�2s
�2 þ ða1R�2 þ a0R�1Þs�1 þ ða2R�2 þ a1R�1 þ a0R0 þ b0Þs

0

þða3R�2 þ a2R�1 þ a1R0 þ b1Þs þ ða4R�2 þ a3R�1 þ a2R0 þ b2Þs
2

þða4R�1 þ a3R0Þs3 þ a4R0s
4

a0 þ a1s þ a2s2 þ a3s3 þ a4s4
;

HðsÞ ¼
#b�2s�2 þ #b�1s�1 þ #b0 þ #b1s þ #b2s2 þ #b3s3 þ #b4s4

a0 þ a1s þ a2s2 þ a3s3 þ a4s4
: ð13Þ

The #bk and ak coefficients are estimated from the solution of the frequency domain Unified
Matrix Polynomial Approach (UMPA) model. The bk and Rk coefficients can be deconvolved by
setting equal the like terms in the second and third lines of Eq. (13) and arranging into a matrix
equation:

a0 0 0 0 0 0

a1 a0 0 0 0 0

a2 a1 a0 I 0 0

a3 a2 a1 0 I 0

a4 a3 a2 0 0 I

0 a4 a3 0 0 0

0 0 a4 0 0 0

2
666666666664

3
777777777775

R�2

R�1

R0

b0
b1
b2

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

#b�2
#b�1
#b0
#b1
#b2
#b3
#b4

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð14Þ

Note that Eq. (14) has seven equations, but only six unknown bk and Rk coefficients. A linear
system of equations with more equations than unknowns has no solution unless there are
redundant equations, but there are no redundant equations in Eq. (14). This condition can be
rectified by recalling that the general expansion of a partial fraction model to a rational fraction
polynomial model is

Xm

r¼1

Ar

s � lr

¼
Pm�1

k¼0 bkskPm
k¼0 aksk

; where bm�1 ¼
Xm

r¼1

Ar: ð15Þ

The ak coefficients are combinations of the poles ðlrÞ and the bk coefficients are combinations of
the poles and residues ðArÞ; except bm�1; which is equal to the summation of the residues. If the
assumption is made that the system described by the partial fraction model in Eq. (15) is causal,
which is a standard assumption for the modal model, the bm�1 term becomes zero. This is the
reason that the numerator polynomial in Eqs. (2) and (8) are defined with a maximum order of
m � 2: If the m � 1 term is included Eq. (14), then there are as many unknowns as equations and
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the system of equations has a solution.

a0 0 0 0 0 0 0

a1 a0 0 0 0 0 0

a2 a1 a0 I 0 0 0

a3 a2 a1 0 I 0 0

a4 a3 a2 0 0 I 0

0 a4 a3 0 0 0 I

0 0 a4 0 0 0 0

2
666666666664

3
777777777775

R�2

R�1

R0

b0
b1
b2
b3

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

#b�2
#b�1
#b0
#b1
#b2
#b3
#b4

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

: ð16Þ

The b3 coefficient computed from Eq. (16) should be zero, or nearly zero relative to the other
coefficients, if the assumptions on the FRF model are correct, which could be used as a numerical
check on the UMPA model solution. Another reason that generalized residuals is conceptually
defined as a complete polynomial is that if any of the Rk coefficients are omitted, Eq. (16) would
not have a solution.
The matrix equation in Eq. (16) is for the example above. The general form of the matrix

equation to solve for the coefficients of the residual and original numerator polynomials can be
determined by inspection. The first nu � nl þ 1 columns are filled with a cyclic permutation of the
denominator ak coefficients and the rows corresponding to the #b0; #b1;y; #bm�1 coefficients in the
last m columns are filled with an identity matrix. The original bk coefficients are needed to
determine the residues directly from the UMPA model solution, as will be used in the algorithm
developed in Section 5.

4. Frequency domain UMPA model with generalized residuals

The frequency domain UMPA model can be derived by rearranging the rational fraction
polynomial MIMO FRF model in Eq. (2) as

X%m

k¼0

½ðjoÞk½ak��½HðoÞ� ¼
X%m�2

k¼0

ðjoÞk½bk�: ð17Þ

The frequency domain UMPA model that includes generalized residuals can be derived by
rearranging Eq. (12) as

Xm

k¼0

½ðjoÞk½ak��½HðoÞ� ¼
Xmþnu

k¼nl

ðjoÞk½ #bk�: ð18Þ

By letting ½am� be an identity matrix and rearranging, the linear matrix equation is

Xm�1

k¼0

½ðjoÞk½ak��½HðoÞ� �
Xmþnu

k¼nl

ðjoÞk½ #bk� ¼ �ðjoÞm½HðoÞ� ð19Þ
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or in matrix form

½½a0�½a1�?½am�1�½ #bnl
�?½ #bmþnu

��

½HðoÞ�

jo½HðoÞ�

^

ðjoÞm�1½HðoÞ�

�ðjoÞnl ½I �

^

�ðjoÞmþnu ½I �

2
666666666664

3
777777777775
¼ �ðjoÞm½HðoÞ�: ð20Þ

Note that the only difference between the UMPA models in Eqs. (17) and (18) is the range of the
indices on the right-hand side polynomial series. Thus, all of the developments related to the basic
UMPA model are also valid for the UMPA model that includes generalized residuals in Eq. (18).

5. An s.d.o.f. frequency domain algorithm with generalized residuals

One application of the UMPA model with generalized residuals is in the area of single-degree-
of-freedom algorithms. When only one mode is of interest, but the other modes are not well-
separated (i.e., by a factor of 10), the traditional s.d.o.f. methods (e.g., Co/Quad, finite difference,
least-square local, least-squares global, etc.) do not adequately represent the FRF characteristics
due to the lack of residuals in their formulation. Increasing the model order to account for other
modes produces additional computational poles that must be sorted to identify the actual pole of
interest. A preferred alternative would be to only calculate the single desired pole and use
residuals to account for all nearby modes. This new method includes generalized residuals and is
formulated as a global, low order, frequency domain, short basis, single-input/multiple-output
(SIMO) algorithm. Additionally, the residues can be calculated directly from the UMPA model
solution by deconvolving the resulting Ibkm and IRkm vectors, as shown above. (While the
inclusion of negative powers of o in the residual polynomial does create a singularity at o ¼ 0;
this is not a practical issue because o ¼ 0 is never included in the frequency band used to identify
the system poles.)
The partial fraction model of Eq. (21) and the rational fraction polynomial model of Eq. (22)

both represent the frequency response matrix of a system:

½HðoÞ� ¼
X2N

r¼1

½Ar�
jo� lr

; ð21Þ

½HðoÞ� ¼
Pm�2

k¼0 ðjoÞk½bk�Pm
k¼0 ðjoÞk½ak�

; where mX2: ð22Þ

FRFs can be synthesized by Eq. (21) with the estimated poles and residues, but FRFs can also be
synthesized by Eq. (22) with the ½ak� and ½bk� polynomial coefficients from the UMPA model
solution. Since the rational fraction polynomials can synthesize an FRF that replicates both its
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resonance and magnitude characteristics, it stands to reason that the residue information must
also be contained in the ½bk� polynomial.
To reveal the relationship between the residues and ½bk� polynomial, consider a single-input/

single-output (SISO), s.d.o.f. system and expand the partial fraction model as

HðoÞ ¼
A1

jo� l1
þ

A2

jo� l2
; HðoÞ ¼

ðjo� l2ÞA1 þ ðjo� l1ÞA2

ðjo� l1Þðjo� l2Þ
;

HðoÞ ¼
joðA1 þ A2Þ � l2A1 � l1A2

ðjoÞ2 � joðl1 þ l2Þ þ l1l2
; HðoÞ ¼

job1 þ b0
ðjoÞ2a2 þ joa1 þ a0

; ð23Þ

which is now in the form of a rational fraction polynomial model. By equating the like terms in
the third and fourth lines of Eq. (23), with b1 ¼ 0; and arranging into a matrix equation, the
residues can be computed as

1 1

�l2 �l1

" #
A1

A2

( )
¼

0

b0

( )
: ð24Þ

Eq. (24) can be further simplified by using the relations

l1 ¼ s1 þ jo1; l2 ¼ ln1 ¼ s1 � jo1 and A2 ¼ �A1; ð25Þ

which gives the direct solution of the residue ðA1Þ of a SISO, s.d.o.f. system from the b0 coefficient
of the UMPA model numerator polynomial as

A1 ¼
b0
2jo1

: ð26Þ

This procedure can be extended to a SISO m.d.o.f. system, and also, under certain conditions, to a
MIMO m.d.o.f. system [42]. For a SIMO s.d.o.f. system, as in the parameter estimation algorithm
developed here, Eq. (20) can be simplified as follows:

½a0a1I #bnl
m?I #b2þnu

m�

IHðoÞm

ðjoÞIHðoÞm

�ðjoÞnl ½I �

^

�ðjoÞ2þnu ½I �

2
6666664

3
7777775 ¼ �ðjoÞ2IHðoÞm; ð27Þ

where the row vectors, I #bkm and IHðoÞm; are of size ð1� NoÞ:
By loading the matrices appropriately and including the conjugate frequencies ðHð�oÞÞ in the

set of equations generated from Eq. (27), the solution vector, ½a0 a1 I #bnl
m?I #b2þnu

m�; will be
strictly real. Combining the solution of Eq. (27) with a generalization of Eq. (16) allows the
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extraction of the underlying vector of Ib0m coefficients, with one b0 coefficient for each output
d.o.f.

a0 0 ? ? 0 0 0

a1 & & ^ ^ ^

1 & & & ^ 1 0

0 & & & 0 0 1

^ & & & a0 0 0

^ & & a1 ^ ^

0 ? ? 0 1 0 0

2
666666666664

3
777777777775

IRnl
m

^

^

^

IRnu
m

Ib0m

Ib1m

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

I #bnl
m

^

I #b0m

I #b1m

^

^

I #b2þnu
m

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: ð28Þ

Solving for the roots (l1 and l2) of the characteristic equation, s2 þ a1s þ a0 ¼ 0; and combining
with Eq. (26) provides the final form of the solution, the simultaneous solution for a single global
pole and a vector of residues:

IA1m ¼
Ib0m
2jo1

: ð29Þ

Therefore, the final SIMO modal parameters are l1 and IA1m:

5.1. Three d.o.f. analytical example

To demonstrate the effectiveness of this technique, a 3-d.o.f. example is introduced, and then
the modal parameters of the second mode are estimated with the s.d.o.f. frequency domain
algorithm for several residual polynomials. The FRF synthesized from the estimated ak and #bk

coefficients is compared to the analytical function in Fig. 2 for no residuals (i.e., nl ¼ 0 and
nu ¼ �2), in Fig. 3 for the physical residuals (i.e., nl ¼ �2 and nu ¼ 0) and in Fig. 5 for a general
residual polynomial (nl ¼ �4 and nu ¼ 4). The magnitudes of the residual polynomial coefficients
are also plotted in Figs. 4 and 6. The inset plot in Figs. 2, 3 and 5 details the comparison of the
analytical and synthesized functions in the region near the resonance peak. In Fig. 7, the FRF is
synthesized from Eq. (17) using the coefficients of the original numerator polynomial without
residuals ðb0Þ and of the residual polynomial ðR�4;y;R4Þ; which were determined from Eq. (28).
This plot is included to show that the same FRF is synthesized from Eqs. (17) and (18) and to
verify the deconvolution of the estimated numerator polynomial into the original numerator and
residual polynomials. In Fig. 8, the residual polynomial is synthesized and compared to the
function synthesized using only modes 1 and 3 to illustrate that the residual polynomial does
indeed account for the residual contributions of modes 1 and 3 in the frequency range of interest.
The estimated modal parameters are listed in Table 1.
The plots in Figs. 2–8 and the results in Table 1 show that the greatest error in the estimated

modal parameters is for the case with no residuals and the accuracy improves by including
residuals in the parameter estimation model. In this case, the physical residuals were adequate to
compensate for the out-of-band modes, but this system had relatively well-spaced modes.
The next system has more closely spaced modes and again the modal parameters of the second

mode are estimated with the s.d.o.f. frequency domain algorithm for several residual polynomials.
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The FRF synthesized from the estimated ak and #bk coefficients is compared to the analytical
function in Fig. 9 for no residuals, in Fig. 10 for the physical residuals and in Fig. 12 for a general
residual polynomial (nl ¼ �12 and nu ¼ 12Þ: The magnitudes of the residual polynomial

Fig. 3. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated polynomial

coefficients (solid line), with physical residuals.

Fig. 2. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated polynomial

coefficients (solid line), with no residuals.
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coefficients are also plotted in Figs. 11 and 13. The inset plot in Figs. 9, 10 and 12 details the
comparison of the original and synthesized functions in the region near the resonance peak. The
estimated modal parameters are listed in Table 2.
The plots in Figs. 9–13 and the results in Table 2 show essentially the same results as the

preceding example in that the greatest error in the estimated modal parameters is for the case with

Fig. 4. Magnitude of residual polynomial coefficients for Fig. 3.

Fig. 5. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated polynomial

coefficients (solid line), with a generalized residual polynomial of orders �4 : 4:
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no residuals and the accuracy improves by including residuals in the parameter estimation model.
However, there is much greater error with no residuals and still some error with the physical
residuals. In this case, a generalized residual polynomial with more orders was needed to
accurately estimate the modal parameters. This is typical, that is, the closer the out-of-band modes
are to the frequency range of interest, the more residual terms that are required to completely

Fig. 6. Magnitude of residual polynomial coefficients for Fig. 5.

Fig. 7. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated and

deconvolved polynomial coefficients (solid line), with a generalized residual polynomial of orders �4 : 4:
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account for their effects. Note however for this example, while the absolute differences appear
small, it must be recognized that this is analytical data (i.e., no noise) and as such any differences
are significant and therefore the last case represents an order of magnitude improvement in the fit
error.

5.2. Complex mode indicator function experimental example

To demonstrate the practical application of generalized residuals, a second example which
utilizes experimentally measured FRFs and the Complex Mode Indicator Function (CMIF) [44] is
presented. The CMIF was originally developed as an aid to model order determination for
multiple reference datasets [23], but has since become the basis for a spatial domain parameter

Fig. 8. Comparison of the generalized residual polynomial with orders �4 : 4 to the contribution of the residual

modes.

Table 1

Estimated modal parameters of 3-d.o.f. system with well-separated modes

Residuals Frequency Frequency Damping Damping Residue Residue

(Hz) error (Hz) (%) error (%) error

Analytical 300 0.5 0� j1:00
system

nl ¼ 0; nu ¼ �2 300.2048 +0.2048 0.4880 �0:012 0:0000� j0:9931 þ0:0000þ j0:0069
(no residuals)

nl ¼ �2; nu ¼ 0 300.0008 +0.0008 0.5000 0 0:0000� j1:0000 0

nl ¼ �4; nu ¼ 4 300.0000 0 0.5000 0 0:0000� j1:0000 0
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estimation algorithm [45,46]. The common approach in modal parameter estimation is a two-
stage, linear process. The majority of frequency domain algorithms, as well as time domain
algorithms, produce temporal information, the poles, in the first stage, and scaled spatial

Fig. 9. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated polynomial

coefficients (solid line), with no residuals.

Fig. 10. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated polynomial

coefficients (solid line), with physical residuals.
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information, the modal vectors and modal scaling, in the second stage. Conversely, spatial
domain algorithms produce unscaled spatial information, the modal vectors, in the first stage and
temporal and scaling information, the poles and modal scaling, in the second stage. A spatial
domain algorithm is classified as a zero order UMPA model, which is an algorithm that is
‘‘programmed to process data at a single temporal condition (frequency or time) [1]’’.

Fig. 11. Magnitude of residual polynomial coefficients for Fig. 10.

Fig. 12. Comparison of a 3-d.o.f. analytical FRF (dashed line) and the FRF synthesized from the estimated polynomial

coefficients (solid line), with a generalized residual polynomial of orders �12 : 12:
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The CMIF is formed by computing the economical singular-value decomposition (SVD) of the
FRF matrix at each spectral line,

½HðokÞ�
ðNo�NiÞ

¼ ½Uk�
ðNo�NiÞ

½Sk�
ðNi�NiÞ

½Vk�H
ðNi�NiÞ

; ð30Þ

where ½Sk� is a diagonal matrix of real, non-negative singular values in descending order, ½Uk� is
the matrix of left singular vectors and ½Vk� is the matrix of right singular vectors, for NoXNi: If
this is not the case, then the CMIF processes the transpose of the FRF matrix.
A CMIF is a plot of the singular values as a function of frequency, usually on a log-magnitude

scale, with one curve for each singular value. Often the ‘‘tracked’’ CMIF is plotted to alleviate the
singular-value crossover effect [44]. The peaks in the CMIF curves coincide with the resonances of
the system and locate the damped natural frequency of the modes to the nearest spectral line. The
left singular vector associated with the significant singular value at a CMIF peak is an
approximation of the mode shape, and the right singular vector is an approximation of the modal

Fig. 13. Magnitude of residual polynomial coefficients for Fig. 12.

Table 2

Estimated modal parameters of 3-d.o.f. system with closely spaced modes

Residuals Frequency Frequency Damping Damping Residue Residue

(Hz) error (Hz) (%) error (%) error

Analytical system 300 0.5 0� j1:00
nl ¼ 0; nu ¼ �2 300.8512 +0.8512 0.3545 0:0000� j0:8265 þ0:0000þ j0:1735
(no residuals)

nl ¼ �2; nu ¼ 0 300.0603 +0.0603 0.4923 0:0000� j0:9936 þ0:0000þ j0:0064
nl ¼ �12; nu ¼ 12 300.0000 0 0.5000 0 0:0000� j1:0004 �0:0000� j0:0004
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participation factors. Fig. 14 shows the CMIF of a measured dataset of FRFs for a system with
No ¼ 145; Ni ¼ 3 and Df ¼ 1 Hz:
To use the CMIF parameter estimation method, the peaks in the CMIF curves corresponding

to modes of the system are selected by the operator. This is usually a straightforward task, but in
some instances additional analysis techniques, such as the Modal Assurance Criterion (MAC)
[47], mode tracking [1] and consistency diagrams, are needed to select a valid set of modes. If two
CMIF curves have a peak at the same, or nearly the same, frequency, then there are two
significant singular vectors, which indicates a repeated, or pseudo-repeated, mode of multiplicity
two. This same reasoning also applies to modes of multiplicity greater than two. The approximate
modal vectors and participation factors obtained in the first stage of the CMIF method are used
to generate an enhanced frequency response function (eFRF) for each mode. The poles are then
estimated from the eFRFs, which must be scaled correctly [44,48] to also be used to estimate the
modal scaling [46]. (In contrast, time and frequency domain algorithms utilize the poles obtained
in the first stage to estimate the residues in the second stage.) The left and right singular vectors at
the CMIF peaks create a spatial filter that transforms the measured FRF matrix from the physical
space to the modal space and creates a virtual measurement that enhances the mode of interest.
The eFRF for mode s; eHsðokÞ; is a scalar function that is generated at each spectral line as

eHsðokÞ
ð1�1Þ

¼ fUsg
T

ð1�NoÞ
½HðokÞ�
ðNo�NiÞ

fVkg
ðNi�1Þ

¼ fUsg
T

X2N

r¼1

fCrgfLrg
T

jo� lr

" #
fVsg: ð31Þ

The effect of this operation is to attenuate the contribution of all modes except mode s; thus
enhancing this mode. The degree of enhancement is dependent on the inner-product of the left

Fig. 14. Complex mode indicator function of a measured FRF dataset.
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singular vector fUsg and the modal vectors fCrg: If the spatial distribution of the d.o.f.s. is such
that the mode shapes are sufficiently dissimilar, then the inner-product will approach zero for ras
and mode r will not significantly contribute to the summation in Eq. (31). Ideally, the
transformation uncouples the eFRF into an s.d.o.f. function in the region near the principal peak,
such as in Fig. 15. Then the pole can be estimated from the eFRF for each mode with a scalar,
s.d.o.f. frequency domain model:

½ðjoÞ2a2 þ ðjoÞa1 þ a0�eHðoÞ ¼ b0: ð32Þ

The eFRF generated by Eq. (31) of the CMIF peak marked at 125 Hz in Fig. 14 is plotted in
Fig. 15, also plotted is the eFRF synthesized by Eq. (32) with the estimated ak and b0 polynomial
coefficients. The shaded region indicates the frequency band around the peak evaluated in the
parameter estimation algorithm. The estimated frequency was 125:270 Hz and the damping ratio
was 0.595%. This example shows that if the eFRF is uncoupled into a s.d.o.f. function, at least
near the principal peak, an s.d.o.f. algorithm is adequate to estimate the pole and residuals are not
needed.
If the eFRF does not isolate the mode of interest, the surrounding modes will influence the

estimation of pole and a simple s.d.o.f. algorithm is not sufficient. The basic idea of the CMIF
parameter estimation method is to select peaks from the CMIF curves and obtain the mode shape
and pole for that mode directly. Increasing the model a-order is not a preferable modification of
the algorithm to account for the other modes present in the eFRF, because to do so would
introduce computational poles, which is contrary to the benefits of the CMIF method. Since these
other modes in the eFRF are just residuals with respect to the mode of interest, an s.d.o.f.
algorithm with a generalized residual polynomial, such as that in Section 5 with the FRF replaced

Fig. 15. Enhanced frequency response function for the mode at 125 Hz; generated from measured FRFs (dashed line)

and synthesize from UMPA model (solid line).
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with an eFRF, is appropriate for the CMIF method:

X2
k¼0

½ðjoÞkak�eHðoÞ ¼
Xnuþ2

k¼nl

ðjoÞk #bk: ð33Þ

The eFRF of the CMIF peak marked at 97 Hz in Fig. 14 is shown in Fig. 16. It is not an s.d.o.f.
function near the principal peak, but has significant contribution of some nearby modes which
were not attenuated by the spatial filter. Some residuals are needed in the parameter estimation
algorithm to account for the other modes in the eFRF, but which residual polynomial? Instead of
trial and error with different residual polynomials, a consistency diagram can be generated with
the indices of the residual polynomial (nl and nu) as the variable parameters in the UMPA model.
In a traditional consistency diagram for model a-order, only the value of m; the upper order of the
denominator m polynomial, can be varied (e.g., m ¼ 2; 3;y; 10). In a consistency diagram for
residuals, the values of nl ; nu or both can be varied. The indices nl and nu define the orders of the
generalized residual polynomial

Pnu

k¼nl
ðjoÞkRk; which multiplies with

P2
k¼0 ðjoÞkak and combines

with b0 to form the numerator polynomial of
Pnuþ2

k¼nl
ðjoÞk #bk:

The consistency diagram for the peak at 97 Hz is shown in Fig. 17 for varying nl ; in Fig. 18 for
varying nu and in Fig. 19 for varying both nl and nu: Table 3 lists the orders of the residual
polynomial for the model variations of the consistency diagrams in Figs. 17–19. The consistency
criteria are: 1% for frequency, 5% for damping, 1% for conjugates and 10�6 for reciprocal of the
condition number. (The meaning of the consistency diagram symbols are as follows: J implies
that the conjugate pole exists within the specified tolerance, r implies that the frequency
calculated for two successive model iterations is within the specified tolerance, D implies that both
the frequency and damping calculated for two successive model iterations is within the specified

Fig. 16. Enhanced frequency response function for the mode at 97 Hz:
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tolerance, and * implies that the numerical conditioning for that model variation solution
fell below the specified tolerance.) Fig. 20 is the eFRF synthesized by Eq. (33) for all model
variations of the consistency diagram in Fig. 19, the inset plot shows the region near the peak of

Fig. 18. CMIF method consistency diagram of the mode at 97 Hz; for varying the upper order of the residual

polynomial. D; pole; r; frequency; J; conjugate; �; not conjugate; * ; 1/condition.

Fig. 17. CMIF method consistency diagram of the mode at 97 Hz; for varying the lower order of the residual

polynomial: D; pole; r; frequency; J; conjugate; �; not conjugate; * ; 1/condition.
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interest. Fig. 21 is the synthesized eFRF for model variation number 5, the first consistent pole. In
Table 4 is a list of the poles estimated for the model variations of the consistency diagram in
Fig. 19.
Fig. 22 is the consistency diagram for the earlier example of the mode at 125 Hz of Fig. 15, the

orders of the residual polynomial and the estimated poles for the model variations are listed in
Table 5. For this case of an uncoupled eFRF, the pole is consistent without residuals. However,
the addition of residuals does not adversely affect the estimation of the pole, until the numerator
polynomial order becomes high enough to cause poor numerical conditioning in the UMPA
model solution. Table 5 is a list of the modal parameters estimated for the model variations of the
consistency diagram in Fig. 22.

Table 3

The lower and upper orders of the residual polynomial for the model variations of the consistency diagrams in

Figs. 17– 19

Fig. 17 Fig. 18 Fig. 19

1 nl ¼ 0; nu ¼ �2 (no residuals) nl ¼ 0; nu ¼ �2 (no residuals) nl ¼ 0; nu ¼ �2 (no residuals)

2 nl ¼ 0; nu ¼ 1 nl ¼ �1; nu ¼ 0 nl ¼ 0; nu ¼ 0

3 nl ¼ 0; nu ¼ 2 nl ¼ �2; nu ¼ 0 nl ¼ �1; nu ¼ 1

4 nl ¼ 0; nu ¼ 3 nl ¼ �3; nu ¼ 0 nl ¼ �2; nu ¼ 2

5 nl ¼ 0; nu ¼ 4 nl ¼ �4; nu ¼ 0 nl ¼ �3; nu ¼ 3

6 nl ¼ �4; nu ¼ 4

Fig. 19. CMIF method consistency diagram of the mode at 97 Hz; for varying the lower and upper orders of the

residual polynomial. D; pole; r; frequency; J; conjugate; �; not conjugate; * ; 1/condition.
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6. Application considerations

The use of residuals as a consistency criterion represents an important paradigm shift for modal
analysis. While many parameter estimation problems can be solved reasonably using the

Fig. 21. Enhanced frequency response function for the mode at 97 Hz; generated from measured FRFs (solid line) and

synthesized from UMPA model variation 5 in Fig. 19 (dashed lines).

Fig. 20. Enhanced frequency response function for the mode at 97 Hz; generated from measured FRFs (solid line) and

synthesized from UMPA model for all residual polynomials of the consistency diagram in Fig. 19 (dashed lines).
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Fig. 22. CMIF method consistency diagram of the mode at 125 Hz: D; pole; r; frequency; J; conjugate; �; not
conjugate; * ; 1/condition.

Table 4

The estimated poles for the model variations of the consistency diagram in Fig. 19

Residuals Frequency (Hz) Damping (%) Consistency 1/Condition

1 nl ¼ 0; nu ¼ �2 (no residuals) 97:002 1:898 Conjugate 3.777e-001

2 nl ¼ 0; nu ¼ 0 96.895 2.190 Frequency 5.149e-002

3 nl ¼ �1; nu ¼ 1 96.929 1.903 Frequency 2.645e-003

4 nl ¼ �2; nu ¼ 2 96.900 2.058 Frequency 1.365e-003

5 nl ¼ �3; nu ¼ 3 96.880 2.052 Pole 6.962e-006

6 nl ¼ �4; nu ¼ 4 96.880 2.070 1/Condition 3.509e-007

Table 5

The lower and upper orders of the residual polynomial and the estimated poles for the model variations of the

consistency diagram in Fig. 22

Residuals Frequency (Hz) Damping (%) Consistency 1/Condition

1 nl ¼ 0; nu ¼ �2 (no residuals) 125.270 0.595 Conjugate 3.220e-001

2 nl ¼ 0; nu ¼ 0 125.264 0.595 Pole 4.476e-002

3 nl ¼ �1; nu ¼ 1 125.263 0.592 Pole 1.826e-003

4 nl ¼ �2; nu ¼ 2 125.263 0.592 Pole 7.292e-005

5 nl ¼ �3; nu ¼ 3 125.263 0.593 Pole 2.887e-006

6 nl ¼ �4; nu ¼ 4 125.263 0.593 1/Condition 1.137e-007
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traditional approach of varying the order of the denominator polynomial, there are many
problems for which this approach is unsuccessful. One area that does not lend itself well to the
traditional parameter estimation approaches involves the analysis of highly noisy, slightly
inconsistent data. For this condition, each model iteration generates an entirely new set of system
pole estimates with little consistent characteristic. Often, however, the number of active modes
within a given frequency range may be identified using other techniques, for example the complex
mode indicator function (CMIF). In this case then, it is better to fix the denominator polynomial
(i.e., number of poles) and iterate over the numerator polynomial (i.e., residuals) until a consistent
solution is obtained. One real world example for which this approach has been found to be highly
effective is the testing of bridges [49,50]. The success in this case was dependent upon the
acquisition of a large set of multiple reference FRF data. Finally, while not presented in this paper,
extensive numerical examples, by one of the authors, have been run evaluating the effectiveness of
this approach for various noise, modal density, and relative model order conditions [42].

7. Conclusions

The recognition of the equivalent importance of the numerator and denominator polynomials of
a rational fraction polynomial has led to the development of a generalized residual model that has
been shown to have broad application to frequency domain modal parameter estimation. Its
inclusion in the UMPA formulation provides significant additional tools for identifying consistent
modal parameters without the traditional additional work of eliminating computational poles.
Additionally, when combined with a single reference rational fraction polynomial (RFP) algorithm,
it allows the development of an efficient global pole and residue vector s.d.o.f. parameter estimation
algorithm. Experience has shown that the generalized residuals, s.d.o.f. algorithm is superior to
other s.d.o.f. algorithms, providing improved pole and vector estimates, and with appropriate
programmatic implementation, requiring minimal additional computational time or resources.

Appendix A. Nomenclature

An complex conjugate of A
Ar residue of a single-input/single-output frequency response function of mode r

½Ar� residue matrix of mode r
½HðoÞ� frequency response function matrix
j

ffiffiffiffiffiffiffi
�1

p
%m maximum index of denominator polynomial, for all system modes

m maximum index of denominator polynomial, for in-band modes
nl lower index limit of the residual polynomial
nu upper index limit of the residual polynomial
%N total number of system modes

N number of modes in the frequency range of interest
r mode number (subscript)
Rk kth order generalized residual polynomial coefficient
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½Rk� kth order generalized residual polynomial coefficient matrix
½ #Rk� kth order generalized residual polynomial coefficient matrix convolved with denomi-

nator polynomial
½RlðoÞ� lower residual function
½RuðoÞ� upper residual function
½Rl;k� kth order lower residual polynomial coefficient matrix
½Ru;k� kth order upper residual polynomial coefficient matrix
ak kth order denominator polynomial coefficient
½ak� kth order denominator polynomial coefficient matrix
bk kth order numerator polynomial coefficient
½bk� kth order numerator polynomial coefficient matrix
½ #bk� kth order numerator polynomial coefficient matrix combined with generalized residual

polynomial
lr complex pole of mode r; lr ¼ sr þ jor

sr damping of mode r

o variable of frequency ðrad=sÞ
or damped natural frequency of mode r
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